Bremen

\V \\7
\ s }%\?I
% I 5 L]
;:/ ®

Advanced Computer Graphics
Boundary Representations
for Graphical Models

N\
7z
e
® 9

R e

<N
-4

G. Zachmann
University of Bremen, Germany
cgvr.cs.uni-bremen.de



Bremen

W The Problem &

= How to store objects in versatile and efficient data structures?

= Definition Boundary-Representation (B-Rep):
Objects "consist" of

1. Triangles, quadrangles, and polygons, i.e., geometry; and
2. Incidence and adjacency relationships, i.e., connectivity ("topology")

= By contrast, there are also representations that try to model the
volume directly, or that consist only of individual points
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W  Definitions: Graphs

= A graphis a pair G=(V, E), where V={v,,v,,...,v, 1} is a non-empty
set of n different nodes (points, vertices) and E is a set of edges
v, v))

= When Vis a (discrete) subset of RY with d = 2, then G=(V, E) is
called a geometric graph

= Two edges/nodes are called neighboring or adjacent, iff they
share a common node/edge

" If e=(v, v) isan edge in G, then eand v; are called incident (dito
foreundv;; v,and v, are called neighboring or adjacent)

" |n the following, edges will be undirected edges, and
consequently we will denote them just by vy,

= The degree of a node/vertex := number of incident edges
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Polygons

= A polygon is a geometric graph P=(V, E), where
V={v,v;,...,v, 1} C RY, d=2, and E={ Vo,V1), «oor Vi1, Vo) }

= Nodes are called vertices (sometimes points or corners)

= A polygon is called
= flat, if all vertices lie in the same plane;

= simple, if it is flat and if the intersection of every two edges in E is either
empty or a vertex in V, and if every vertex is incident to exactly two
edges (i.e., if the polygon does not have self intersections).

= By definition, we will consider only closed polygons
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U  Mesh (Polygonal Mesh)

= Let M be a set of closed, simple polygons P;;
letV=.V, E=U E

= M is called a mesh iff

= the intersection of two polygons in M is either empty, a
pointveV,6 oranedge ecE; and

= each edge e eE belongs to at least one polygon
(no dangling edges)

= The set of all edges, belonging to one polygon only,
is called the border of the mesh

= A mesh with no border is called a closed mesh

= The set of all points V and edges E of a mesh
constitute a graph, too
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Y First Explicit Application of a Mesh for a Music Video
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U  Definition: Polyhedron

= A mesh is called polyhedron, if

1. each edge e&E is incident to exactly two polygons (i.e., the mesh is
closed); and

2. no subset of the mesh fulfills condition #1.

= The polygons are also called facets / faces (Facetten)

= Theorem (w/o proof):
Each polyhedron P partitions space into three subsets: its surface,
its interior, and its exterior.
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The Most Naive Data Structure for Meshes

= Array of polygons; each polygon = array of vertices

= Example:
face[0] = | |face[1]=| |face[2]=
Xo Yo 2o X0 Yo 2o X4 Y424
X1 Y1 44 X4 Y424 X5 Y5 Zs
X5 Y5 Zs X7Y7 47 X6 Y6 Ze
X4 Y42y X3 Y323 X7 Y7247
" Problems:

= Vertices occurr several times!

- Waste of memory, problems with animations, ...

= How to find all faces, incident to a given vertex?

= Different array sizes for polygons with different numbers of vertices
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W  Orientation

= Each facet of a mesh can be oriented by the
definition of a vertex order

= Each facet can have exactly two orientations

= Two adjacent facets have the same
orientation, if the common edge is traversed
in opposite directions, when the two facets
are traversed according to their orientation

" The orientation determines the surface
normal of a facet. By convention, it is
obtained using the right-hand-rule
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= A mesh is called orientable, if all facets can be oriented such that

every two adjacent facets have the same orientation

= The mesh is called oriented, if all facets actually do have the same

orientation

= A mesh is called non-orientable, if there are
always two adjacent facets that have
opposite orientation, no matter
how the orientation of all facets is chosen

= Theorems (w/o proof):

= Each non-orientable surface that is embedded in
three-dimensional space and closed must have
a self-intersection

= The surface of a polyhedron is always orientable
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Mébius Strip 11, woodcut, 1963
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V) Is the Escher Knot an Orientable Mesh or Not?

S NO Animated Escher Knot

i instantreality

http://homepages.sover.net/~tlongtin
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Y Definition: Homeomorphism

" Homeomorphism = bijective, continuous mapping between two
"objects" (e.g. surfaces), the inverse mapping of which must be
continuous too

= Two objects are called homeomorph iff there is a homeomorphism
between the two

= Note: don't confuse this with homomorphism or homotopy!
= |llustration:

= Squishing, stretching, twisting is allowed

= Making holes is not allowed

= Cutting is allowed only, if the object is glued together afterwards at
exactly the same place
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= Homeomorph objects are also called
topologically equivalent
= Examples:
= Disc and square
= Cup and torus
= An object and its mirror object
= Trefoil knot and .... ?

= The border of the Mdbius strip and ... ?

= All convex polyhedra are
homeomorphic to a sphere

= Many non-convex ones are topologically
equivalent to the sphere, too

G. Zachmann Advanced Computer Graphics SS July 2014
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Y  Two-Manifolds (Zwei-Mannigfaltigkeiten)

= Definition: a surface is called two-manifold, iff for each point on
the surface there is an open ball such that the intersection of the

ball and the surface is topologically equivalent to a two-
dimensional disc

= Examples: -
o 2@
N 0 ’ ’
¢

= Notice: in computer graphics, often the term "manifold" is used

when 2-manifold is meant!

= The term "piecewise linear manifold" is sometimes used by @
people, to denote just a mesh ... (3 W
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W The Indexed Face Set

= |dea: common "vertex pool" (shared vertices)

= Example:

vertices =
Xo Yo 2o
X1 Y144
X2 Y222

X3 Y343

face vertex index

0
|
2

0,1,5,4
0,3,7,4
4,5,6,7

= Advantage: significant memory savings

Vs
fiif,

A

Vs / V2

= 1 vertex =1 point + 1 vector (v.-normal) + uv-texture coord. = 32 bytes

= 1 index =1 integer

= 4 bytes

= Deformable objects / animations are mcuch easier

" Probably the most common data structure
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Y  The OB]J File Format B

= OBJ = indexed face set + further features
= Line based ASCIl format

1. Ordered list of vertices:

= Introduced by "v" on the line

= Spatial coordinates x, y, z (X0,Y0:Z0) (%1,1,21)
= Index is given by the order in the file
2. Unordered list of polygons: V%0 Yo %0
= A polygon is introduced by "f" VX V4
= Then, ordered list of vertex indices VX2)V242
= Length of list = # of edges VX3Y373
= Orientation is given by order of vertices £012
= |n principle, "v" and "f" can be mixed £ 132

arbitrarily
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Y More Attributes

= Vertex normals:
= prefix"vn"
= contains x, y, z for the normalen
= not necessarily normalized

= not necessarily in the same in the
same order as the vertices

= indizes similar to vertex indices
= Texture coordinates:

= prefix "vt"

= not necessarily in the same in the

same order as the vertices

= Contains u,v texture coordinates
= Polygons:

= use "/" as delimiter for the indices

= vertex / normal / texture

= normal and texture are optional

= use "//" to omit normls, if only
texture coords are given

G. Zachmann Advanced Computer Graphics SS

(X2,Y2125)
(GZIb 2rCz)
(u2rV2)
(XOfy o;Zo)
(GOrb OrCO)
(u 0, VO)

(X1,Y1/Z7)
(aq,b4,¢1)

(Uq,v7)

«
e

V Xo Yo Zo
\ESDAR4

VXyY22)

vn d, by ¢,
vn a, b, ¢,
vna, b, ¢,

vt ug v
vt u, v,
vtu, v,

f0/0/0 ...
f..

f0/0/0 1/1/1 2/2/2

f0/1/01/1/1 2/1/2
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" Problems:
= Edges are (implicitly) stored two times

= Still no adjacency information (no "topology")

= Consequence:
= Finding all facets incident to a given vertex takes time O( n ), where
n = # vertices of the mesh
= Dito for finding all vertices adjacent to another given vertex

= A complete mesh traversal takes time O(n?)

- With a mesh traversal you can, for instance, test whether an object is closed

- Can be depth-first or breadth-first
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Y Examples Where Adjacency Information is Needed Q:

= Computing vertex normals %

= Editing meshes

= Simulation, e.g., mass-spring systems il
S
Sk 1 ‘1‘?
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Example Application: Simplification

= Simplification: Generate a coarse mesh from a fine mesh
= While maintaining certain critera (will not be discussed further here)

= Elementary operations:

= Edge collapse:
—>

- All edges adjacent to the edge are required
= Vertex removal:

<K
<o = U/D

- All edges incident to the vertex are needed
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Y All Possible Connectivity Relationships

Given

Vertex
Vertex
Vertex
Edge
Edge
Edge
Face

Face

O OO0 N O L A W N =

Face

Looking for

notation

("all neighbours ..")

Vertices
Edges
Faces
Vertices
Edges
Faces
Vertices
Edges
Faces

VoV
V—E
V—F
E—V
E—E
E—F
F—V
F—E
F—F

Abstract notation of a data structure with
all connectivity relationships:
arrows show the incidence/adjacency info

G. Zachmann
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= Example: the Indexed Face Set

vertices face vertex index
Xo Yo 4o 0 0,1,5,4
X1 V14 | 0,3,7,4
X2Y22) 2 4,5 6,7
X33 23

A
“T1

= Question: What is the minimal data structure, that can answer all

neighboring queries in time O(1)?
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Y  The Winged-Edge Data Structure

= |dea: edge-based data structure (in contrast to face-based)

= Observations:

= An edge stores two indices to 2 vertices: e.org, e.dest
— yields an orientation of the edge

= In a closed polyhedron, each edge is incident to exactly 2 facets

= |f itis oriented, then one
of these facets has the same
orientation as the edge,
the other one is opposite 9&-dest | face 1

face 2 »£.0r9

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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= Each edge has 4 pointers to 4 adjacent edges:

1. e.prf = edge adjacent to e.dest and incident to right face
(prf = "previous right face")

2. e.nrf = edge adjacent to e.org and incident to right face

("next right face")

3./4. e.nlf / e.plf = edge adjacent to e and incident to left face (" next/

previous left face")

= Observation: if all facets
are oriented consistently,
then each edge occurs once
from org—dest and once
from dest—org

G. Zachmann Advanced Computer Graphics SS

e.prf
m. e.dest | rightface
e
e.ori
left face v
e.nrf
e.plf
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Optional

= |n addition:
= Each edge stores one pointer to the left and right facet (e.lf, e.rf)

= Each facet & each vertex stores one pointer to a arbitrary edge incident
to it

= Abstract representation of the data structure:

4

®
e

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations

E-X3)
b

<N

28


Gabriel Zachmann
Optional


eeeee Optional

Y Example
List of vertices
% coord e
0O 0.0 0.0 0.0 0 Facets
1 1.0 00 0.0 1 0 e0 -
2 10 1.0 0.0 2 1 e8 -
3 00 1.0 0.0 3 2 e5 -
4 0.0 0.0 1.0 8 3 e6 -
5 1.0 0.0 1.0 9 4 ell -
6 1.0 1.0 1.0 10 5 e8 +
7 00 1.0 1.0 11

List of edges

org dest ncw ncew pcw pcew  If rf
vO v el e5 e4 e3 f1 O
vl v2 e2 e6 e5 e0 f2 O
v2 v3 e3 e/ e6 el f3 O
v3 vO e0 e4 e2 e/ f4 O
vO v4 e8 ell e0 e3 f4 f1
vl v5 e9 e8 el e0 f1 f2
v2 v6 el0 e9 e2 el f2 f3
v3 v7 ell el10 e3 e2 f3 f4
v4 v5 e5 e9 e4 ell f5 f1
v5 V6 e6 el0 e5 e8 f5 f2
10 v6 v/ e/ ell e9 e6 f5 13
11 v7 v4 e4 €8 el0 e7 f5 f4

oo NONULNDhAWN—=ON

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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Y Example for Traversing that Data Structure

= Example task: enumerate all edges of f, in CCW order:

€10 \ Edge list

e org dest ncw ncew pew pecew  If rf
0 vO v el e5 e4 e3 f1 fo
1 vl v2 e2 e6 e5 e0 f2 fO
2 V2 v3 e3 e/ e6 el f3  fO
3 v3 vO e0 e4 el e/ f4 O
4 vO v4 e8 ell e0 e3 f4 1
5 vi v5 e9 e8 el e0 f1 f2
6 V2 v6 el0 e9 e2 el f2 13
7 V3 v7 ell el10 e3 e2 f3 f4
8 v4 v5 e5 e9 e4 ell f5 f1
9 V5 v6 e6 el0 e5 e8 f5 f2
10 v6 v7 e/ ell e9 e6 f5 f3
11 v7 v4 e4 e8 el0 e/ f5 f4
f4 — e / n_mw .
Vv, v, . Vv,
e V7 6’77 eV v 11 e
e | e K28 Finish
Va e V3
\&! V3 4 P
e Ve 3
— pccw — pccw Vo — NCCW — NCCW

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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= All neighborhood/connectivity queries can be answered in
time O(k) where (k = size of the output)
= 3 kinds of queries can be answered directly in O(1),

and 6 kinds of queries can be answered by a local traversal of the
data structures around a facet or a vertex in O(k)

= Problem: When following edges, one has to test for each edge
how it is oriented, in order to determine whether to follow
n[cJcw or p[c]cw!

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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W Doubly Connected Edge List [Preparata & Miiller, 1978] * ¢

" |n computer graphics rather known as "half-edge data structure”
= Arguably the easiest and most efficient connectivity data structure
" |dea:

= Like the winged-edge DS, but with "split" edges

= One half-edge (= entry in the edge table) represents only one direction
and one "side" of the complete edge

= The pointers stored with each half-edge: e.prev
Start (org) and end vertex (dest)
\. e. org e.face
Incident face (on the left-hand side)
[ [ e. twm

Next und previous edge (in traversal order) e. dest

(Originating vertex can be omitted, | \3 next

because e.org = e.twin.dest)

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations 32
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= Abstract notation:

= 1 or 2 pointers to vertices per edge,
epending on whether or not a pointer to
the originating vertex (orq) is stored with e

= Requires twice as many entries in the edge
table as the winged-edge DS

G. Zachmann Advanced Computer Graphics SS July 2014
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List of Vertices Facets
v coord e 0 e20
0O 0.0 0.0 0.0 0 1 e4

1 1.0 0.0 0.0 1 2 €0
2 1.0 1.0 0.0 2 3 el5
3 0.0 1.0 0.0 3 4 el6
4 0.0 0.0 1.0 4 5 €8
5 1.0 0.0 1.0 9

6 1.0 1.0 1.0 13

7 0.0 1.0 1.0 16

List of Half-Edges

e org next prv twin/| e org next prv twin
O O 1 3 6 (|12 2 13 15 10
1 1 2 0 1113 6 14 12 22
2 2 3 1 15 1114 7 15 13 19
3 3 0 2 18 |15 3 12 14 2
4 4 5 7 20 (|16 7 17 19 21
5 5 6 4 8 |17 4 18 16 7
6 1 / 5 0O [18 O 19 17 3
7 0 4 6 17 |19 3 16 18 14
8 1 9 11 5 (|20 5 21 23 4
9 5 10 8 23 [|121 4 22 20 16
10 6 11 9 12 |22 7 23 21 13
Also note the demo on 11 2 8 10 1 23 6 20 22 9
http://www.holmes3d.net/graphics/dcel/

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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Y Invariants in a DCEL

= Here, we will use the "functional notation", i.e.,
twin(e) = e.twin

" |nvariants (= axioms in an Abstract Data Type "DCEL"):

= twin( twin(e) ) = e, if the mesh is closed

org( next(e) ) = dest(e)

org(e) = dest( twin(e) ) [if twin(e) is existing]

org(v.edge ) =v [v always points to a leaving edge!]

etc. ...

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations 36
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Face and Vertex Cycling

= Given: a closed, 2-manifold mesh

= Wanted: all vertices incident to a given face f

= Algorithm:

= Running time is in O(k) , with k = # vertices of f

G. Zachmann

e start = f.edge
e = e_start
repeat
output e.dest
e = e.next

until e == e start

Advanced Computer Graphics SS

July 2014
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= Task: report all vertices adjacent to a given vertex v

= Algorithm (w.l.0.g., v points to a leaving edge):

e start ~ v.edge
e — e_start

repeat
output e.dest v
e — e.twin.next
until e == e_start ~— e

= Running time is in O(k) , where k = # neighbours of v

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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= Terminology: a feature = a vertex or an edge or a facet

" Theorem:

A DCEL over a 2-manifold mesh supports all incidence and

adjacency queries for a given feature in time O(1) or O(k), where
k = # neighbours.

= Crucial property:
the DCEL must be proper

|MPROPEL PCES OF
A CUBE.

Courtney Gibbons 2007

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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Limitations / Extensions of the DCEL

= A DCEL can store only meshes that are ...
1. two-manifold and
2. orientable, and

3. the polygons of which do not have "holes"!

i
()

71 /17
/7 V7 v
;) ==

= Extensions: lots of them, e.qg. those of Hervé Bronnimann
= For non-2-manifold vertices, store several pointers to incident edges
= Dito for facets with holes

= Yields several cycles of edges for such vertices/faces

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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Optional
A DCEL Data Structure for Non-2-Manifolds

= Directed Edge DS: extension of half-edge DS for meshes that are
not 2-manifold at just a few extraordinary places

" |dea:

= Store pointers to other edges (e.next, e.prev, v.edge, f.edge) as integer
indices into the edge array

= Use the sign of the index as a flag for additonal information

= Interpret negative indices as pointers into additonal arrays, e.qg.,
- a list of all edges eminating from a vertex; or

- the connected component accessible from a vertex / edge

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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Optional

= Why does the conventional DCEL fail for the following example?

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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Combinatorial Maps Bl

= Remark: winged-edge and DCEL data structures are (simple)
examples of so-called combinatorial maps

= Other combinatorial maps are:
= Quad-edge data structure (and augmented quad-edge)
= Many extensions of DCEL

= Cell-chains, n-Gmaps
(like DCELs that can be extended to n-dimensional space)

= Many more ...

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations 52
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W The Euler Equation

" Theorem (Euler's Equation):
Let V, E, F = number of vertices, edges, faces

in a polyhedron that is homeomorph to a sphere.

Then,
V-_E+F =2

= Examples:

8
12+1
6 +

—m<
I

sS July 2014

G. Zachmann Advanced Computer Graphics

V=8+1
E=12+1+1
F=6+1
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Proof (given by Cauchy)

= Given: a closed mesh (Polyhedron)
= First idea:

= Remove one facet (yields an open mesh; the border is exactly the edge
cycle of the removed facet)

= Stretch the mesh by pulling its border apart until it becomes a planar
graph (works only if the polyhedron is homeomorph to a sphere)

= |t remains to show:
V-E+F=1
= Second idea: triangulate the graph (i.e., the mesh)

= Draw diagonals in all facets with more than 3 vertices

= For the new feature count we have

V- E'+F =V—-(E4+1)+(F+1)=V—-E+F

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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. cc =
VR

= The graph has a border; triangles have O, 1, or 2 "border edges"

= Repeat one of the following two transformations:

= |f there is a triangle with exactly one border edge,
remove this triangle ; it follows that

Vi-E'+F =V—-(E-1)+(F-1)=V—-E+F

= |f there is a triangle with exactly two border edges,
remove the triangle ; it follows that

V- E'+F =(V-1)—(E-2)+(F-1)=V—-E+F
= Repeat, until only one triangle remains
= For that triangle, the Euler equation is obviously correct

= Because each of the above transformations did not change the value of
V-E+F, the equation is also true for the original graph, hence for the
original mesh
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W  Application of Euler's Equation to Meshes

= Euler's Equation — relationship between #triangles and
#vertices in a closed triangle mesh

" |n a closed triangle mesh,

each edge is incident to exactly 2 triangles , so v
3F = 2E / X A
= Plug this into Euler's equation: %v

1
2:V—§F+F & SF=V-2

= Therefore, for large triangle meshes

F~2V

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations 57
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= Definition Platonic Solid:
A convex polyhedron consisting of a number of congruent & regular
polygons, with the same number of faces meeting at each vertex.

= Reqular polygon = all sides are equal, all angles are equal
V4

®= Theorem (Euklid):

There are exactly five platonic solids.

A@®®9
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Proof

= All facets have the same number of edges = n; therefore:

2E = nF & F:gE
n

= All vertices have the same number of incident edges = m;

therefore 5
2E=mV & V =—E
m
= Plugging this into Euler's equation:
2 2 2 2 2
2=V-E+F=—E-E+-FE & —=——-1+ -
m n E m n

" Yields the following condition on m and n:

1_|_1_1_|_1>1
m n 2 E 2

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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= Additional condition: m and n both must be > 3

= Which {m,n} fulfill these conditions:
{33} {34} {43} ({53} ({3,5)

FPlatonic Solids |

So is there anything
going on between

Oh, no. We're

two? just friends.
you two?

G. Zachmann Advanced Computer Graphics SS July 2014
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Y  Digression: Platonic Solids in the Arts

" The platonic solids have been known at least 1000 years before

Plato in Scotland

G. Zachmann Advanced Computer Graphics SS July 2014 Boundary Representations
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Portrait of Johannes Neudérfer and his Son
Nicolas Neufchatel, 1527—1590

| DUref: Melencolia I
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W The Euler Characteristic

= Caution: the Euler equation holds only for polyhedra, that are
topologically equivalent to a sphere!

= Examples:

Tetrahemihexahedron Octahemioctahedron Cubohemioctahedron

6-12+7=1 12-24+12=0 12-24+10=-2 V-E+F

= But: the quantity V-E+F stays the same no matter how the
polyhedron is deformed (homeomorph)
— so the quantity V-E+F is a topologic invariant
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= Definition Euler characteristic:

= Examples:
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= The Euler characteristic is even independent of the tessellation!

eede

V=16 V=16 V=28 V=24

E=32 E=36 E=56 E=48

F=16 F=20 F=26 F=22

X= 0 X= 0 X= -2 xX= -2
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" Theorem:
Assume we are given a closed and orientable mesh consisting of
just one shell. Then the following holds:
The Euler characteristic y=2,0, -2, ... &
the mesh is topologically equivalent to a sphere, a torus, a
double torus, etc. ...
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W The Euler-Poincaré Equation B

= Generalization of the Euler equation for 2-manifold, closed
surfaces (possibly with several components):

V-E+F=2(5-0G)
= G =# handles, S =# shells (Schalen / Komponenten)

= Gis called "Genus"

= Handle (hole, Loch): a piece of string inside a ; y
handle cannot be shrunk towards a single point /

= Shell (Schale): by walking on the surface of a shell, each point can be
reached

= We can even cut out so-called "voids" (Aushohlungen) by "inner"
shells

" There are many more generalizations!
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= Examples:

=V=16, E=28, F=14, S=1, G=0:
V-E+F=2=2(5-G)

=V=16, E=32, F=16, S=1, G=1:
V-E+F=0=2(5-G)

=V=16+8, E=32+12, F=16+6,G=1, S=2:
V-E+F=2=2(5-G)
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= Beware: sometimes it is not easy
to determine the genus!

= Example: genus = 2

= "Proof": deform topologically equivalently, until the genus is obvious

¢ D
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Optional

= What is the genus of this object?
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